Drawdown Beta and Portfolio Optimization

Part 2

Based on

Ding and Uryasev. Drawdown Beta and Portfolio Optimization (2021)
and
Zabarankin et al. Capital Asset Pricing Model (CAPM) with Drawdown Measure (2014)
Drawdown: Static-Dynamic Risk Measure and Portfolio Betas

- Drawdown measures current portfolio value compared to the previous pick value.

- Compared to other popular risk measures, such as variance and Value-at-Risk, it shows possible losses over several consecutive periods.

- Drawdown is a so called static-dynamic risk measures:
 - It is dynamic because many time periods are considered.
 - It is static in the sense that decisions are not made on every step of the dynamic process.

- This module is focused on drawdown betas.
SP500 Drawdowns: 1835-2015

Market Draw Downs Jan 01, 1835 through May 31, 2015
S&P 500 Total Return Index
Source: Global Financial Data
Standard Beta

- Standard Beta = normalized correlation of returns of an instrument and the market
- Beta is considered in the framework of Capital Asset Pricing Theory
- Beta equations can be interpreted as a necessary condition of extremum in Markowitz mean-variance portfolio optimization problem
- Instrument with negative beta is a statistical hedge (protection) which supposed to generate positive returns when market goes down
- However, correlations with market may dramatically change when market has a significant drawdown. Protection is not working when it is especially needed (2008 financial crisis)
\{r_t\}_{1 \leq t \leq T} = \text{a sample path of scalar returns of some instrument}

\{w_t\}_{1 \leq t \leq T} = \text{vector of uncompounded cumulative returns,}

\[w_t = \sum_{\nu=1}^{t} r_{\nu} , \quad 1 \leq t \leq T \]

\{d_t\}_{1 \leq t \leq T} = \text{vector of drawdowns,}

\[d_t = \max_{1 \leq \nu \leq t} \{ w_{\nu} \} - w_t , \quad 1 \leq t \leq T \]

- For every time moment \(t \) the **drawdown** \(d_t \) is the difference between the previous maximum cumulative return and the current cumulative return.
Notations

- \(x = (x^1, ..., x^I) = \) vector of weights for \(I \) assets in the portfolio
- \((w_{st}^1, \ldots, w_{st}^I) = \) vector of uncompounded cumulative returns of portfolio at time \(t \) on scenario (sample path) \(s \), where \(s = 1, \ldots, S; \ t = 1, \ldots, T \)
- \(p_s = \) probability of the scenario (sample path) of returns of securities
- \(w_{st}(x) = \sum_{i=1}^{I} w_{st}^i x^i = \) cumulative portfolio return at time \(t \) on scenario \(s \)
- \(w(x) = \) vector of cumulative portfolio returns with components \(w_{st}(x) \)
- \(d_{st}(x) = \max_{1 \leq \nu \leq t} \{ w_{s\nu}(x) \} - w_{st}(x) = \) drawdown of portfolio at time \(t \) on sample path \(s \)
- \(D(w(x)) = \) discrete random drawdown variable taking values \(d_{st}(x) \) with probabilities \(\frac{1}{T} p_s \), where \(s = 1, \ldots, S; \ t = 1, \ldots, T \)
Expected Regret of Drawdown (ERoD)

- **Expected Regret** (also called Partial Moment 1) of a random value X w.r.t. to the threshold ϵ:
 $$\mathbb{E}[X - \epsilon]^+$$

- **Expected Regret of Drawdown (ERoD)** for portfolio x with threshold ϵ is the expected regret of the drawdown random value $D(w(x))$:
 $$ERoD_\epsilon(w(x)) = \mathbb{E} [D(w(x)) - \epsilon]^+$$

- ERoD for a portfolio with threshold ϵ:
 $$ERoD_\epsilon(w(x)) = \frac{1}{T} \sum_{s=1}^{S} \sum_{t=1}^{T} p_s (d_{st}(x) - \epsilon)^+$$
Equivalence of Drawdown Optimization Problems

- ERoD minimization s.t. a constraint on portfolio expected cumulative return at time T:

$$\min_x ERoD_\epsilon(w(x)) \quad s.t. \quad \sum_{s=1}^{S} p_s w_{st}(x) \geq \delta \quad (1)$$

- CDaR minimization s.t. a constraint on portfolio expected cumulative return:

$$\min_x CDaR_\alpha(w(x)) \quad s.t. \quad \sum_{s=1}^{S} p_s w_{st}(x) \geq \delta \quad (2)$$

For every confidence level α an optimal solution x^* of CDaR minimization problem (2) can be obtained by solving ERoD minimization problem (1) with some threshold ϵ. For every ϵ an optimal solution x^* of ERoD minimization problem (1) can be obtained by solving the CDaR minimization problem (2) with some confidence level α.
Drawdown Betas

- Drawdown Betas show performance of an instrument when market is in drawdown

- Two variants of Drawdown Beta:
 1. CDaR Beta
 2. ERoD Beta

- Instrument with negative Drawdown Beta generate positive return when market is in drawdown (at least in-sample)

- Drawdown Betas are obtained from necessary conditions of extremum for drawdown portfolio optimization problems (similar to the Standard Beta)

- Drawdown Betas may have very different values compared with Standard Beta (do NOT confuse with so called Downside Beta based on Lower Semi-deviation, which has values close to Standard Beta)
Drawdown Betas: Simplified Explanation

- **CDaR Beta:**

 \[
 \frac{\text{average instrument losses over } x \% \text{ worst case market drawdown periods}}{\text{average market losses over } x \% \text{ worst case market drawdown periods}}
 \]

- **ERoD Beta:**

 \[
 \frac{\text{average instrument losses during market drawdowns exceeding threshold}}{\text{average market drawdowns exceeding threshold}}
 \]
Drawdown Betas: Formal Definition

- **CDaR Beta (Zabarankin, Pavlikov, Uryasev (2014)):**

 \[
 \beta_{CDaR}^i = \frac{\sum_{s=1}^{S} \sum_{t=1}^{T} p_s q_{st}^* (w_{s,t}^i - w_{st}^i)}{CDaR_{\alpha}(w^M)}
 \]

- **ERoD Beta (Ding and Uryasev (2021)):**

 \[
 \hat{\beta}_{ERoD}^i = \frac{1}{T} \sum_{s=1}^{S} \sum_{t=1}^{T} p_s q_{st}^* (w_{s,t}^i - w_{st}^i)}{E_\varepsilon(w^M)}
 \]
CDaR Beta: Maximum Drawdown Example

- \(\text{CDaR}_{\alpha=1} \text{ Beta} = \text{MaxDD Beta} = \frac{76.39\%}{(-70.28\%)} = -1.09 \)
Betas for DOW30 Stocks: 15-year Period

<table>
<thead>
<tr>
<th>Stock</th>
<th>$E_{RoD_{0+}}$</th>
<th>$CDaR_{0.9}$</th>
<th>Standard</th>
<th>Downside</th>
</tr>
</thead>
<tbody>
<tr>
<td>AAPL</td>
<td>-0.606</td>
<td>-0.062</td>
<td>0.98</td>
<td>1.024</td>
</tr>
<tr>
<td>AMGN</td>
<td>-0.094</td>
<td>-0.201</td>
<td>0.856</td>
<td>0.725</td>
</tr>
<tr>
<td>AXP</td>
<td>0.731</td>
<td>1.037</td>
<td>1.375</td>
<td>1.45</td>
</tr>
<tr>
<td>BA</td>
<td>1.321</td>
<td>1.492</td>
<td>1.017</td>
<td>1.254</td>
</tr>
<tr>
<td>CAT</td>
<td>0.798</td>
<td>1.003</td>
<td>1.183</td>
<td>1.106</td>
</tr>
<tr>
<td>CRM</td>
<td>-0.148</td>
<td>-0.257</td>
<td>1.428</td>
<td>1.153</td>
</tr>
<tr>
<td>CSCO</td>
<td>1.036</td>
<td>0.924</td>
<td>1.142</td>
<td>1.001</td>
</tr>
<tr>
<td>CVX</td>
<td>0.132</td>
<td>0.146</td>
<td>1.007</td>
<td>1.103</td>
</tr>
<tr>
<td>DIS</td>
<td>0.221</td>
<td>0.445</td>
<td>0.927</td>
<td>1.031</td>
</tr>
<tr>
<td>GS</td>
<td>0.877</td>
<td>0.556</td>
<td>1.334</td>
<td>1.384</td>
</tr>
<tr>
<td>HD</td>
<td>0.145</td>
<td>0.203</td>
<td>1.022</td>
<td>0.969</td>
</tr>
<tr>
<td>HON</td>
<td>0.803</td>
<td>1.002</td>
<td>0.97</td>
<td>1.05</td>
</tr>
<tr>
<td>IBM</td>
<td>0.022</td>
<td>0.008</td>
<td>0.812</td>
<td>0.794</td>
</tr>
<tr>
<td>INTC</td>
<td>0.333</td>
<td>0.51</td>
<td>0.973</td>
<td>1.006</td>
</tr>
<tr>
<td>JNJ</td>
<td>0.003</td>
<td>0.076</td>
<td>0.577</td>
<td>0.571</td>
</tr>
<tr>
<td>JPM</td>
<td>-0.534</td>
<td>-0.678</td>
<td>1.317</td>
<td>1.447</td>
</tr>
<tr>
<td>KO</td>
<td>-0.122</td>
<td>0.172</td>
<td>0.52</td>
<td>0.593</td>
</tr>
<tr>
<td>MCD</td>
<td>-0.826</td>
<td>-0.389</td>
<td>0.59</td>
<td>0.682</td>
</tr>
<tr>
<td>MMM</td>
<td>0.685</td>
<td>0.647</td>
<td>0.794</td>
<td>0.823</td>
</tr>
<tr>
<td>MRK</td>
<td>0.661</td>
<td>0.903</td>
<td>0.779</td>
<td>0.746</td>
</tr>
<tr>
<td>MSFT</td>
<td>-0.074</td>
<td>0.256</td>
<td>1.02</td>
<td>0.968</td>
</tr>
<tr>
<td>NKE</td>
<td>-0.714</td>
<td>-0.167</td>
<td>1.015</td>
<td>0.956</td>
</tr>
<tr>
<td>PG</td>
<td>0.144</td>
<td>0.306</td>
<td>0.666</td>
<td>0.583</td>
</tr>
<tr>
<td>TRV</td>
<td>-0.32</td>
<td>-0.228</td>
<td>0.907</td>
<td>1.055</td>
</tr>
<tr>
<td>UNH</td>
<td>0.593</td>
<td>0.922</td>
<td>0.72</td>
<td>0.985</td>
</tr>
<tr>
<td>VZ</td>
<td>0.391</td>
<td>0.535</td>
<td>0.758</td>
<td>0.628</td>
</tr>
<tr>
<td>WBA</td>
<td>0.339</td>
<td>0.385</td>
<td>0.816</td>
<td>0.697</td>
</tr>
<tr>
<td>WMT</td>
<td>-0.57</td>
<td>-0.581</td>
<td>0.633</td>
<td>0.503</td>
</tr>
</tbody>
</table>
Do Drawdown Betas Hold the Value over Time?

<table>
<thead>
<tr>
<th></th>
<th>$ERoD_{0+}$-Beta</th>
<th>$CDaR_{0.9}$-Beta</th>
<th>Standard-Beta</th>
</tr>
</thead>
<tbody>
<tr>
<td>DOW30</td>
<td>0.275</td>
<td>0.515</td>
<td>0.676</td>
</tr>
<tr>
<td>S&P 100</td>
<td>0.305</td>
<td>0.449</td>
<td>0.645</td>
</tr>
<tr>
<td>S&P 500</td>
<td>0.074</td>
<td>0.293</td>
<td>0.577</td>
</tr>
</tbody>
</table>

- Correlation coefficients of ERoD, CDaR and Standard Betas between two 7-years periods for DOW30, SP100, and SP500 stocks.
Drawdown Betas (15-years): Netflix (NFLX)

- $CDaR_{0.9}$ Beta = -2.388 based on largest 10% SP500 drawdowns
- Standard Beta = 0.85 based on monthly SP500 returns
Relevant Links

- **Drawdown Beta website:**
 http://qfdb.ams.stonybrook.edu/index_SP_10.html

- **Publications:**

- **CDaR portfolio optimization case study:**
Drawdown Betas are obtained from necessary optimality conditions for drawdown portfolio optimization problems.

Drawdown Betas may have quite different values compared to Standard Beta.

Drawdown Betas hold value across time reasonably well for large stocks (DOW30, SP100).

Drawdown Betas can be used for constructing portfolios with controlled drawdown.

Zero Drawdown Beta constraints can be imposed in the portfolio optimization problems (similar to Zero Standard Beta constraint).

Drawdown Beta website shows CDaR, ERoD, and Standard Betas as well as other characteristics for SP500 stocks: http://qfdb.ams.stonybrook.edu/index_SP_10.html.

Quantitative Finance Program at Stony Brook University includes a Case Study Course containing material related to Drawdown Betas.