A Handy Reference Booklet for the Kansas Mappers, Appraisers, and Cadastral Specialists.
COMMONLY USED SCALES FOR APPRAISAL MAPS:

Use the engineering scale marked “10” for all 1” = 100’ maps. (urban)
Each increment will represent 10 feet. (100’ divided by 10 increments.)

Use the engineering scale marked “20” for all 1” = 200’ maps. (suburban)
Each increment will represent 10 feet. (200’ divided by 20 increments.)

Use the engineering scale marked “40” for all 1” = 400’ maps. (rural)
Each increment will represent 10 feet. (400’ divided by 40 increments.)

Use the engineering scale marked “50” for all 1” = 500’ maps. (highly urban)
Each increment will represent 1 feet. (50’ divided by 50 increments.)
CONTENTS

Subject...................................... Page

Public Land Survey ......................... 1
6th Principal Meridian & Base Line .............. 3
Rectangular Survey Townships ........... 5
Equivalents, Equations & Conversions ...... 6
Measure Conversions ..................... 7
Calculating Dimensions ............... 8
Land Compass ......................... 9
Mapping Acronyms ..................... 10
Points of Curves ..................... 11
Parcel Identification Numbering and Map Checklist ............... 12
Section Sketch .................... 13
K.S.A. 79-1459 ....................... 14
County Abbreviations ............... 15
County FIPS Codes .................. 16
KS UTM Zones ....................... 17
KS State Plane Zones .............. 18
State of KS, Counties ............... 19
Common Map Scales ................. 20
Up to the time of the Revolutionary War and until about the end of the 19th century, land, when parcelled out, and sold or granted, was described by “Metes and Bounds”. That system is used in states along the east coast, Texas, and parts of Ohio. Each parcel of land varies in size, is described independently, and is not tied in to any system of base lines.

The present system of Governmental Land Surveys was adopted by Congress on the 7th of May, 1785. It became the legal method of describing and dividing lands. It is called the rectangular system, or sometimes referred to as the “Public Land Survey System” (PLSS).

The Kansas-Nebraska Act of May 30, 1854 created the territories of Nebraska and Kansas, which had to be surveyed before settlement of the prairies could proceed. On May 8, 1855, Charles A. Manners set a cast iron monument on the bluff west of the Missouri River at 40° north latitude and continued westward from the monument 108 miles establishing the base line, the boundary between Kansas and Nebraska, and the Initial Point of the 6th Principle Meridian.

This Initial Point controls the system of sections, townships and ranges of the public land surveys in Nebraska, Kansas, and parts of Colorado, Wyoming, and South Dakota. This Initial Point is referenced in all ownership records throughout the system.
UTM Zones
Universal Transverse Mercator
KS-NE Act of May 30, 1854

On May 8, 1855, Charles Manners set a cast iron monument on a bluff west of the Missouri River at the 40° North Latitude.

1855-1856, Manners surveyed westward 108 miles establishing the initial point for the Base Line and 6th P.M.

June 11, 1987, the Professional Surveyors of the 6th P.M. dedicated a memorial at the site, located just NW of Mahaska, Kansas, at the Washington-Republic County and Kansas-Nebraska State Boundaries.

KANSAS FIPS CODES
(Federal Information Processing Standard)

20001 - AL ALLEN
20003 - AN ANDERSON
20005 - AT ATCHISON
20007 - BA BARBER
20009 - BT BARTON
20011 - BB BOURBON
20013 - BR BROWN
20015 - BU BUTLER
20017 - CS CHASE
20019 - CQ CHAUTAUQUA
20021 - CW CHEROKEE
20023 - CN CHEYENNE
20025 - CA CLARK
20027 - CL CLAY
20029 - CD CLOUD
20031 - CF COFFEY
20033 - CM COMANCHE
20035 - CL COWLEY
20037 - CR CRAWFORD
20039 - DC DECATUR
20041 - DK DICKINSON
20043 - DP DONIPHAN
20045 - DG DOUGLAS
20047 - ED EDWARDS
20049 - EL ELLS
20051 - EL ELLIS
20053 - EW ELLSWORTH
20055 - FF FINNEY
20057 - FO FORD
20059 - FR FRANKLIN
20061 - GE GEARY
20063 - GO GOVE
20065 - GH GRAHAM
20067 - GT GRANT
20069 - GY GRAY
20071 - GL GREELEY
20073 - GW GREENWOOD
20075 - HM HAMILTON
20077 - HP HARPER
20079 - HV HARVEY
20081 - HS HASKELL
20083 - HG HODGEMAN
20085 - JA JACKSON
20087 - JF JEFFERSON
20089 - JW JEWELL
20091 - JO JOHNSON
20093 - KE KEARNY
20095 - KM KINGMAN
20097 - KW KIOWA
20099 - LB LABETTE
20101 - LE LANE
20103 - LV LEAVENWORTH
20105 - LC LINCOLN
20107 - LN LINN
20109 - LG LOGAN
20111 - LY LYON
20113 - MP McPHERSON
20115 - MN MARION
20117 - MS MARSHALL
20119 - ME MEADE
20121 - MI MIAMI
20123 - MC MITCHELL
20125 - MG MONTGOMERY
20127 - MR MORRIS
20129 - MT MORTON
20131 - NM NEMAH
20133 - NO NEOSHO
20135 - NS NESS
20137 - NT NORTON
20139 - OS OSAGE
20141 - OB OSBORNE
20143 - OT OTAWA
20145 - PN PAWNEE
20147 - PL PHILLIPS
20149 - PT POTTAWATOMIE
20151 - PR PRATT
20153 - RA RAWLINS
20155 - RN RENO
20157 - RP REPUBLIC
20159 - RC RICE
20161 - RL RILEY
20163 - RO ROCKS
20165 - RH RUSH
20167 - RS RUSSELL
20169 - SA SALINE
20171 - SC SCOTT
20173 - SG SEDGWICK
20175 - SW SEWARD
20177 - SN SHAWNEE
20179 - SD SHERIDAN
20181 - SH SHERMAN
20183 - SM SMITH
20185 - SF STAFFORD
20187 - ST STANTON
20189 - SV STEVENS
20191 - SU SUMNER
20193 - TH THOMAS
20195 - TR TREGO
20197 - WB WABAUNSEE
20199 - WA WALLACE
20201 - WS WASHINGTON
20203 - WH WICHITA
20205 - WL WILSON
20207 - WO WOODSON
20209 - WY WYANDOTTE
## KANSAS COUNTIES

<table>
<thead>
<tr>
<th>County Name</th>
<th>County Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>ALLEN</td>
<td>AL</td>
</tr>
<tr>
<td>ANDERSON</td>
<td>AN</td>
</tr>
<tr>
<td>ATCHISON</td>
<td>AT</td>
</tr>
<tr>
<td>BARBER</td>
<td>BA</td>
</tr>
<tr>
<td>BARTON</td>
<td>BT</td>
</tr>
<tr>
<td>BOURBON</td>
<td>BB</td>
</tr>
<tr>
<td>BROWN</td>
<td>BR</td>
</tr>
<tr>
<td>BUTLER</td>
<td>BU</td>
</tr>
<tr>
<td>CHASE</td>
<td>CS</td>
</tr>
<tr>
<td>CHAUTAUTQUA</td>
<td>CQ</td>
</tr>
<tr>
<td>CHEROKEE</td>
<td>CK</td>
</tr>
<tr>
<td>CLARK</td>
<td>CA</td>
</tr>
<tr>
<td>CLAY</td>
<td>CY</td>
</tr>
<tr>
<td>CLOUD</td>
<td>CD</td>
</tr>
<tr>
<td>COFFEE</td>
<td>CF</td>
</tr>
<tr>
<td>COMANCHE</td>
<td>CM</td>
</tr>
<tr>
<td>COWLEY</td>
<td>CL</td>
</tr>
<tr>
<td>CRAWFORD</td>
<td>CR</td>
</tr>
<tr>
<td>DECatur</td>
<td>DC</td>
</tr>
<tr>
<td>DICKINSON</td>
<td>DK</td>
</tr>
<tr>
<td>DONIPHAN</td>
<td>DP</td>
</tr>
<tr>
<td>DOUGLAS</td>
<td>DG</td>
</tr>
<tr>
<td>EDWARDS</td>
<td>ED</td>
</tr>
<tr>
<td>ELK</td>
<td>EK</td>
</tr>
<tr>
<td>ELLIS</td>
<td>EL</td>
</tr>
<tr>
<td>ELLSWORTH</td>
<td>EW</td>
</tr>
<tr>
<td>FINNEY</td>
<td>FI</td>
</tr>
<tr>
<td>FORD</td>
<td>FO</td>
</tr>
<tr>
<td>FRANKLIN</td>
<td>FR</td>
</tr>
<tr>
<td>GEARY</td>
<td>GE</td>
</tr>
<tr>
<td>GOVE</td>
<td>GO</td>
</tr>
<tr>
<td>GRAHAM</td>
<td>GH</td>
</tr>
<tr>
<td>GRANT</td>
<td>GT</td>
</tr>
<tr>
<td>GRAY</td>
<td>GY</td>
</tr>
<tr>
<td>GREELY</td>
<td>GL</td>
</tr>
<tr>
<td>GREENWOOD</td>
<td>GW</td>
</tr>
<tr>
<td>HAMILTON</td>
<td>HM</td>
</tr>
<tr>
<td>HARPET</td>
<td>HP</td>
</tr>
<tr>
<td>HARVEY</td>
<td>HV</td>
</tr>
<tr>
<td>HASKELL</td>
<td>HS</td>
</tr>
<tr>
<td>HODGEMAN</td>
<td>HG</td>
</tr>
<tr>
<td>JACKSON</td>
<td>JA</td>
</tr>
<tr>
<td>JEFFERSON</td>
<td>JF</td>
</tr>
<tr>
<td>JEWELL</td>
<td>JW</td>
</tr>
<tr>
<td>JOHNSON</td>
<td>JO</td>
</tr>
<tr>
<td>KEARNY</td>
<td>KE</td>
</tr>
<tr>
<td>KINGMAN</td>
<td>KM</td>
</tr>
<tr>
<td>KOTYKA</td>
<td>KW</td>
</tr>
<tr>
<td>LABETTE</td>
<td>LB</td>
</tr>
<tr>
<td>LANE</td>
<td>LE</td>
</tr>
<tr>
<td>LEAVENWORTH</td>
<td>LV</td>
</tr>
</tbody>
</table>

### County Names

- ALLEN
- ANDERSON
- ATCHISON
- BARBER
- BARTON
- BOURBON
- BROWN
- BUTLER
- CHASE
- CHAUTAUTQUA
- CHEROKEE
- CLARK
- CLAY
- CLOUD
- COFFEE
- COMANCHE
- COWLEY
- CRAWFORD
- DECatur
- DICKINSON
- DONIPHAN
- DOUGLAS
- EDWARDS
- ELK
- ELLIS
- ELLSWORTH
- FINNEY
- FORD
- FRANKLIN
- GEARY
- GOVE
- GRAHAM
- GRANT
- GRAY
- GREELY
- GREENWOOD
- HAMILTON
- HARPET
- HARVEY
- HASKELL
- HODGEMAN
- JACKSON
- JEFFERSON
- JEWELL
- JOHNSON
- KEARNY
- KINGMAN
- KOTYKA
- LABETTE
- LANE
- LEAVENWORTH

### County Abbreviations

- AL
- AN
- AT
- BA
- BT
- BB
- BR
- BU
- CS
- CQ
- CK
- CA
- CY
- CD
- CF
- CM
- CL
- CR
- DC
- DK
- DP
- DG
- ED
- EK
- EL
- EW
- FI
- FO
- FR
- GE
- GO
- GH
- GT
- GY
- GL
- GW
- HM
- HP
- HV
- HS
- HG
- JA
- JF
- JW
- JO
- KE
- KM
- KW
- LB
- LE
- LV
- LC
- LN
- LG
- LY
- MN
- MS
- MP
- SA
- NT
- OS
- OB
- OT
- PN
- PL
- PT
- PR
- RA
- RN
- RP
- RC
- RL
- RO
- RH
- RS
- SA
- SC
- SG
- SW
- SN
- SD
- SH
- SM
- SF
- ST
- ST
- SV
- SU
- TH
- TR
- WB
- WA
- WS
- WH
- WO
- WY

### Maps

- Map of Kansas Counties
- Outline of Kansas Principal Mountains
- Outline of Kansas Principal Mountains
- Outline of Kansas Principal Mountains
Chapter 79.—TAXATION

Article 14.—PROPERTY VALUATION, EQUALIZING ASSESSMENTS, APPRAISERS AND ASSESSMENT OF PROPERTY

79-1459. Preparation of appraisal maps, contents; preparation of appraisal records for improvements and land parcels, contents; classification of property. The county appraiser shall:

(a) Prepare an accurate appraisal map or maps of all real estate located within the county showing: (1) All property or lot lines; (2) the names of all subdivisions; (3) block and lot numbers in urban areas; (4) township, range and government lot numbers in rural areas; (5) street names; (6) rights-of-way; (7) recorded easements; and (8) any other information which may be deemed useful to the county appraiser or may be prescribed by the director of property valuation. Such map or maps shall be kept current.

(b) Utilizing the format prescribed or approved by the director of property valuation, prepare an appraisal record for each improvement or group of buildings which constitute an improvement showing: (1) Name and address of the property owner, the property classification and subclassification, taxing unit number and the city or township in which the property is located; (2) a description of the parcel of real estate adequate to locate it upon the appraisal map; (3) a sketch of the improvements showing dimensions and, if found advisable, a photograph thereof; (4) the building classification category as provided for by law; (5) the major building specifications of each improvement; (6) the exact or approximate date of construction of each building; (7) the value indicators of the improvements; (8) the appraised valuation of the improvements and of the land and of their total; and (9) any other information which may be deemed useful to the county appraiser or may be prescribed by the director of property valuation. If the appraisal record is contained on a card, the card shall have enough columns to show changes and appraised value of five or more successive years.

(c) Utilizing the format prescribed or approved by the director of property valuation, prepare an appraisal record for each parcel of land showing: (1) The name and address of the property owner, the property classification and subclassification, taxing unit number and city or township in which the property is located; (2) a description of the parcel of land adequate to locate it upon the appraisal map; (3) a sketch of the dimension of the land and the total number of acres; (4) the general classification of land as provided for by law and, if agricultural, the number of acres in each capability classification; (5) the value indicators of the appraised land; (6) the appraisal of the land and of the improvements and of their total; and (7) any other information which may be deemed useful to the county appraiser or may be prescribed by the director of property valuation. If the appraisal record is contained on a card, the card shall have enough columns to show changes and appraised value of five or more successive years.

(d) If it is found advisable, combine the land appraisal record and the improvements appraisal record provided for in subsections (b) and (c) showing all information required therein.

(e) Annually, as of January 1, classify all taxable and exempt real and personal property into one of the following classifications:

- **Residential.** Residential property shall include all land and improvements utilized or intended to be utilized as a dwelling or home and all personal property listed on residential personal property statements.

- **Commercial.** Commercial property shall include all land and improvements utilized or intended to be utilized as a business or income producing enterprise and all personal property subject to ad valorem taxation listed on commercial personal property statements.

- **Agricultural.** Agricultural property shall include all land and improvements utilized or intended to be utilized for the production of livestock or crops and all personal property listed on agricultural personal property statements.

- **State Appraised.** State appraised property shall include all property designated by statute to be appraised by the director of the division of property valuation.

- **Public Service.** Public service property shall include all land and improvements utilized or intended to be utilized for public education, charitable, religious or governmental purposes and all personal property listed on public service personal property statements.

The county appraiser shall, annually, as of January 1, subclassify each major classification of all taxable and exempt, real and personal property in a manner prescribed by the director of the division of property valuation.

SECTION GRID: Copy this page and use when plotting rectangular survey descriptions.

<table>
<thead>
<tr>
<th>Rectangular Survey of a Section of Land</th>
</tr>
</thead>
<tbody>
<tr>
<td>NW 1/4</td>
</tr>
<tr>
<td>NW 1/4</td>
</tr>
<tr>
<td>NW 1/4</td>
</tr>
<tr>
<td>NW 1/4</td>
</tr>
</tbody>
</table>

LINEAR MEASURE

1 Link = 7.92 Inches
25 Links = 1 Rod
1 Rod = 16.5 Feet
1 Chain = 66 Feet
1 Chain = 100 Links
1 Furlong = 40 Rods
1 Mile = 8 Furlongs
1 Mile = 80 Chains
1 Mile = 320 Rods
1 Mile = 5,280 Feet

AREA MEASURE

1 Sq. Yard = 9 Sq. Feet
1 Sq. Rod = 272.25 Sq. Feet
1 Acre = 43,560 Sq. Feet
1 Acre = 160 Sq. Rods
1 Acre = 10 Sq. Chains
1 Sq. Acre is approximately 208.75 Feet Sq.

GEOMETRIC AREA EQUATIONS

Square = Any Side Squared
Rectangle = One Side X Base
Triangle = Base X Half Perpendicular Height
Parallelogram = Base X Perpendicular Height
Trapezoid = Half the Sum of the Parallel Sides X Perpendicular Height
Circle = Diameter Squared X 0.7854; or Radius Squared X 3.1416
### METRIC CONVERSION CHARTS

#### Linear Equivalents

<table>
<thead>
<tr>
<th>STANDARD to METRIC</th>
<th>METRIC to STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 inch = 2.54 centimeters</td>
<td>1 centimeter = 0.3937 inch</td>
</tr>
<tr>
<td>1 foot = 0.305 meter</td>
<td>1 meter = 3.28 feet</td>
</tr>
<tr>
<td>1 yard = 0.914 meter</td>
<td>1 meter = 1.094 yards</td>
</tr>
<tr>
<td>1 mile = 1.61 kilometers</td>
<td>1 kilometer = 0.621 mile</td>
</tr>
</tbody>
</table>

#### Area Equivalents

<table>
<thead>
<tr>
<th>STANDARD to METRIC</th>
<th>METRIC to STANDARD</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 sq. inch = 6.45 sq. cms</td>
<td>1 sq. cm = 0.155 sq. inch</td>
</tr>
<tr>
<td>1 sq. foot = 0.0929 sq. meter</td>
<td>1 sq. meter = 10.76 sq. feet</td>
</tr>
<tr>
<td>1 sq. yard = 0.836 sq. meter</td>
<td>1 sq. meter = 1.196 sq. yards</td>
</tr>
<tr>
<td>1 acre = 0.405 hectare</td>
<td>1 hectare = 2.47 acres</td>
</tr>
<tr>
<td>1 sq. mile = 2.59 sq. kms.</td>
<td>1 sq. km = 0.386 sq. mile</td>
</tr>
</tbody>
</table>

#### Linear Conversions* 

<table>
<thead>
<tr>
<th>WHEN YOU KNOW:</th>
<th>MULTIPLY BY</th>
<th>TO FIND</th>
</tr>
</thead>
<tbody>
<tr>
<td>centimeters</td>
<td>0.3933701</td>
<td>inches</td>
</tr>
<tr>
<td>meters</td>
<td>3.280840</td>
<td>feet</td>
</tr>
<tr>
<td>meters</td>
<td>1.093613</td>
<td>yards</td>
</tr>
<tr>
<td>kilometers</td>
<td>0.621371</td>
<td>miles</td>
</tr>
</tbody>
</table>

#### Area Conversions* 

<table>
<thead>
<tr>
<th>WHEN YOU KNOW:</th>
<th>MULTIPLY BY</th>
<th>TO FIND</th>
</tr>
</thead>
<tbody>
<tr>
<td>sq. centimeters</td>
<td>0.155000</td>
<td>sq. inches</td>
</tr>
<tr>
<td>sq. meters</td>
<td>10.76391</td>
<td>sq. feet</td>
</tr>
<tr>
<td>sq. meters</td>
<td>1.195990</td>
<td>sq. yards</td>
</tr>
<tr>
<td>sq. kilometers</td>
<td>0.386102</td>
<td>sq. miles</td>
</tr>
<tr>
<td>hectares</td>
<td>2.471054</td>
<td>acres</td>
</tr>
</tbody>
</table>

* If conditions are reversed, divide instead of multiplying.
CONVERTING DEEDED ACREAGE INTO DIMENSIONS

If a deed’s primary legal description states "the North 90 acres of the North Half" or the "West 30 acres of the South West Quarter", mappers must convert those acreages to dimensions in order to properly map the parcel.

Begin by making the conversion of acres to square feet. 1 Acre = 43,560 Square Feet. So, take the stated acreage times 43,560.

Acreage x 43,560 = Total Sq. Ft.

Next, use the total sq. ft. and divide by the known dimension.

(Total Sq. Ft.) ÷ (The Known Dimension) = The Unknown Dimension

Example A: “The North 90 acres of the North Half of Section 15”

90 acres x 43,560 = 3,920,400 Total Square Feet.

The deed states that the 90 acre tract is located in the north part of the North Half of Section 15. If the section is a regular-sized section, the known measurement along the north side is one mile or 5,280 feet.

3,920,400 square feet ÷ 5,280 feet = 742.5 feet

Thus the parcel dimensions would be 5,280 east and west and 742.5 north and south. To check your work, multiply 5,280 x 742.5 and divide by 43,560 to get total acres.

Example B: “West 30 acres of Southwest Quarter of Section 15”

30 acres x 43,560 = 1,306,800 total square feet

The deed states that the 30 acre tract is located in the west part of the Southwest Quarter of Section 15. If the section is a regular-sized section, the known measurement along the west side of the quarter is one half mile or 2,640 feet.

1,306,800 square feet ÷ 2,640 feet = 495 feet

Thus the parcel dimensions would be 495 east and west and 2640 north and south. To check your work, multiply 495 x 2,640 and divide by 43,560 to get total acres.
USING A LAND COMPASS

Determine the Point Of Beginning (POB). In this example, it is the point labeled "A".

thence North 45 degrees East 204 feet,

thence South 22 degrees East 250 feet,

thence South 31 degrees West 140 feet,

thence North 39 degrees West 265 feet,

to the point of beginning.

A Land Compass is constructed on the principle of the surveyor's compass—360 degrees are divided into four 90 degree quadrants. Place the center of the compass at the point of beginning of the first line of the course, designated as Point A in the example, with the North and South line of the compass coinciding with the line selected to be the North and South line of the map. A "course" is the combination of the direction and length of any particular line, as 'North 45 degrees East, 204 feet,' etc.

Next, locate 45 degrees from North toward East and draw a line through this point. With the "20" side of an engineer's scale, measure off the first distance, which is 204 feet. This will fall at point B.

Now, move the center of the compass to Point B, keeping the North and South line of the compass on a North and South line of the map. Repeat the process using the data in the second course. In the second course, the bearing is South 22 degrees East; the angle to be laid off is 22 degrees from the South toward East. Proceed in the same manner throughout the balance of the description. When the last line (in this case D-to-A) is drawn, it must pass through A and the distance must measure the distance given in the last course.

If the last two conditions are not fulfilled, there is either an error in laying out the course and distance, or the description is in error.

In the example given, the description proceeds clockwise. Had the description been written so that it proceeded counter-clockwise, the dimensions would be the same, but the directions would be reversed. "North 39 degrees West" would be "South 39 degrees East," "South 31 degrees West" would be North 31 degrees East," etc.

MOST COMMONLY USED ACRONYMS:

BIL
Band Interleaved by Line

CAD
Computer Aided Design/Dispatch/Drafting

CAMF
Computer Assisted Mass Appraisal

CD-R
Compact Disc, Recordable

CD-ROM
Compact Disc, Read Only-Memory

CIR
Color Infrared

CMS
Cadastral Mapping Specialist

COGO
Coordinate Geometry

COM
Component Object Model

DASC
Data Access and Support Center

DB
Database, Decibel

DEM
Digital Elevation Model

DIEM
Dual Independent Map Encoding

DLG
Digital Line Graph

DOQ
Digital Orthophoto Quadrangle

DPI
Dots Per Inch

DRG
Digital Raster Graphic

DTM
Digital Terrain Model

DWG
Drawing File Extension

DAX
Digital Exchange Format

EOS
Earth Observation Satellite

EOSAT
Earth Observation Satellite (Company)

FGCC
Federal Geodetic Control Committee

FGDC
Federal Geographic Data Committee

FIPS
Federal Information Processing Standard

FSA
Farm Services Agency, USDA

FTP
File Transfer Protocol

GIF
Graphics Interchange Format

GPS
Global Positioning System

HARN
High Accuracy Reference Network

HTML
HyperText Markup Language

HTTP
HyperText Transfer Protocol

HUC
Hydrologic Unit Code

IAAO
International Association of Assessing Officers

JPEG
Joint Photographic Experts Group

MGE
Modular GIS Environment

NAD
North American Datum

NAPP
National Aerial Photography Program

NAVD
North American Vertical Datum

NGS
National Geodetic Survey

NRCS
Natural Resources and Conservation Service, USDA

NSDI
National Spatial Data Infrastructure

OCR
Optical Character Recognition

ODBC
Open Database Connectivity

OLE
Object Linking and Embedding

PDF
Portable Document File

PIN
Parcel/Personal Identification Number

PIXEL
Picture Element

PLS
Professional Land Surveyor

PLSS
Public Land Survey System

QUAD
Quadrangle

RGB
Red, Green, Blue

RTK
Real-Time Kinematic (GPS)

RTP
Real-Time Positioning

SID
Scanned Image Data

SQL
Standard Query Language

TIFF
Tagged Image File Format

TIGER
Topologically Integrated Geographic Encoding and Referencing

TIN
Triangulated Irregular Network

URISA
Urban and Regional Information Systems Association

USDA
United States Department of Agriculture

USGS
United State Geological Survey

UTM
Universal Transverse Mercator